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Uniqueness in linearized two-dimensional 
water-wave problems 
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(Received 28 February 1984) 

A geometrical condition sufficient for uniqueness in two-dimensional time-periodic 
linear water-wave problems is derived, and some examples are given. The technique 
can be seen as a generalization of work by John (1950)’ who established uniqueness 
for surface-piercing bodies that have the property that vertical lines down from the 
free surface do not intersect the body. 

The paper is in two parts. Part 1 provides a review of current knowledge on the 
topic of uniqueness, and gives a simple form of John’s proof. Part 2 describes the 
recent progress, in which the ideas of John’s proof are extended so that uniqueness 
can be demonstrated for surface-piercing bodies that do not satisfy John’s geometrical 
criterion. I n  fact the new technique proves uniqueness for a large class of problems 
involving floating bodies, submerged bodies and multiple-body systems. However, 
the present work still does not constitute a general proof of uniqueness for all 
configurations. 

PART 1. A REVIEW OF PREVIOUS RESULTS 

1. Statement of the problem 
We consider the irrotational motion of an inviscid incompressible fluid without 

surface tension; we also assume that all motions are of small amplitude, and are 
periodic with radian frequency w .  Thus the velocity field can be expressed as the 
gradient of a scalar potential which can be written Re (@(z, y) e-iwt). Here (2, y) are 
rectangular Cartesian coordinates with origin in the mean free surface, and with the 
y-axis pointing vertically downwards. 

The two complementary physical problems, of the radiation of waves by the forced 
motion of a rigid body and of the diffraction of waves by a fixed rigid body, can each 
be reduced to the solution of a boundary-value problem in which a@,/an is prescribed 
on the wetted surface of the body. As is usual in uniqueness problems, one considers 
two possible solutions and Q2,  and attempts to show that the difference 
q5 = - G2 vanishes. The potential q5 must satisfy the following conditions: 

V2# = O  i n 9 ,  (1.1) 

where K = w 2 / g  and g is the acceleration due to  gravity; 

q5 - outgoing waves as x + f co , 

% = o  o n y B ,  
an 
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Here YD denotes the fluid bottom y = d ( x ) ,  where d(x )  is the depth of the fluid layer; 
in the proof that follows, i t  will be assumed that d’(x) vanishes outside some finite 
range of x. (For the present, we are considering the finite-depth problem; the case 
of infinite depth is simpler and is briefly discussed in $2.) 9 is the region occupied 
by the fluid, outside any bodies present, and YB is the union of the wetted surfaces 
of all the bodies. YF is the free surface, which is the part of y = 0 outside all bodies. 
Throughout this paper a normal to a surface will always be taken into the fluid region. 

Let Yc denote closures at  large distance x = + X .  Then Green’s theorem, for the 
region 9, bounded by Y = ,4pF U YB U Yc U YD, gives 

($V$*-$*V$)*ndS = 0, (1.6) L 
where $* denotes the complex conjugate of $. 

is from Y,, and so 
The boundary conditions (1.2)) (1.4) and (1.5) ensure that the only contribution 

[ ($--$*-)dy a$* a# = 0. 
x - + x  an an 

We must now suppose that any bodies present, and any variations of d(x) ,  are in 
the region x ,  < x < x2 ,  where x1 and x ,  are finite. Then it can be shown (e.g. Havelock 
1929) that 

(+for x > x2, -for x < 2,). (1.8) 

In this expression k, is the positive root of 

k, tanh (k, d )  = K,  

,u tan ( p d )  = - K.  

(1.9) 

(1.10) 

and p1, p2, . . . are the ordered positive roots of 

We note here that, although the depth d ( x )  is constant for x > x ,  and for x < x,, 
these constants are not necessarily the same; the particular value is to be understood 
from the context. Thus k, and { p n } n 2 1  may have different values in the two regions. 

In (1.8) the coefficients A * are given by 

(+for x > x l ,  -for x < xl) .  (1 .11)  

We shall now show that A* = 0; this is a direct consequence of the energy balance. 
For (1.2)-(1.5) mean that there is no energy input to the fluid region a,, so no 
energy-carrying waves can leave. Use of (1.8) in (1.7) gives 

dy = i i  (2k0 d + sinh 2k0 d)+ +ti  IA-I2 (2k0 d + sinh 2k, d)- ,  

and so (A+( = IA-I = 0. (1.12) 
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Thus l $ ( x , y )  coshk(d-y)dy = 0 for x > x2 or x < xl; 
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(1.13) 

(1.14) 

AS X+co (1.14) shows that ~,=+,($a$*/an)dy+O, and so 
- 

r P 

(1.15) 

Furthermore, the real and imaginary parts of $ satisfy separately all the conditions 
of the problem because A* = 0, and so $ can be taken to be real without any loss 
of generality. This is essential for the proof in Part 2. 

2. The infinite-depth case 
It is useful to set down the analogues of the results of § 1 ,  when the fluid depth 

is infinite, since this leads conveniently to a simple form of the uniqueness proof of 
John (1950). It also forms the starting point for the theory in Part 2. 

When the fluid depth is infinite (1.5) is replaced by 

IV$l+O as y+co. (2.1) 

For this case we take .4pD to be a closure at large depth y = Y ;  then as Y-tm in (1.6), 
(2.1) allows us to deduce (1.7) again. 

Analogous to (1.8) and ( l . l l ) ,  we can establish that (Havelock 1929) $ has a 
representation 

JnOD a* (k) {k cos (ky) - K sin (ky)} e-L lzl dk, (2.2) $ = A f e-Ku-iK IzI + 

Now (1 .7 )  and (2.2) again give (1.12), so that 

JOm $(x, y)  e-Qdy = 0 for x > x2 or x < xl. (2.4) 

We also require the asymptotic form of $ as 1x1 +OO ; we use the fact that there are 
no waves to rewrite $ as 

OD 

where 2,  = Re[(:)"" ( n + K z ) ] ,  with z = y+ix, (2.6) 
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are wave-free potentials (see Ursell 1950; cf. also Ursell 1968). Thus 
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Again this is sufficient to  show that jy,(#a#*/an)dy + O  as X+m, and so (1.15) 
applies in infinite depth also. 

3. Fritz John's uniqueness proof 
The proof in John (1950) is for finite depth, but is given here in its simplest form, 

the case of infinite depth. Further, for simplicity, we have taken the restriction to 
two dimensions of John's three-dimensional proof. Consider (2.4) ; integration by 
parts gives 

0 = [ - ~ - l # ( x ,  y) ~-KYI:+K-~ j a# e-KY dy 
O Y  

= K-l{#(x,O)+jom *epKVdy}. a Y  

Thus #(x, 0) = - jom *e-KYdy. 

Remembering that we can take # to be real, we have 

This applies for x > x2 and x < xl; we now use (1.15), which gives 

K#2(x.0)dx+5jBL 1 (V#)2dxdy. (3.3) 

Here 9, is the part of the free surface Y, in x1 6 x 6 x,, and BL is the subset of B 
with x > x2 or x < xl. If the geometry allows x1 and x2 to be chosen such that TF 
vanishes, then 

1 1 
J9 (V#j2 dx dy 6 2 JgL (V#)' dx dy 6 5 (V#)' dx dy, s, (3.4) 

so that V# 2 0. (3.5) 

Thus 9 = constant; but # + O  as Ix(+oo, and so $ = 0. This proves uniqueness 
provided that pF vanishes, which geometrically implies the following conditions. 

(a )  There must be a single body intersecting y = 0. Let the endpoints of the 
intersection be x1 and x2 (x, > xl). Then 

( b )  all bodies present must lie in x1 6 x 6 x2. 
For the finite-depth case, starting from (1.13) and integrating by parts, the factor 
f in (3.2)-(3.4) is replaced by 

!(I- . 2 k o d  ) 
2 sinh2kod ' 
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y = O  

141 

d(x)  = const I I 
I///// I 

I d(x) const 
///////////// 

FIGURE 1. General situation where uniqueness can be proved using the method of John (1950), 
including depth variations and multiple bodies. 

y = o  

I 

= O  

(Q ) / / ///////////////////// 
FIGURE 2. Situations where the method of John (1950) fails to prove uniqueness: ( a )  bulbous 

body; ( b )  totally submerged body. 

and uniqueness will again follow provided yF vanishes. So the case of finite depth 
will be covered if a further condition is added to (n)  and (b) ,  viz 

The most general situation is illustrated in figure 1.  (Although John (1  950) considers 
only the case of a single body in a uniform finite-depth ocean, the conditions necessary 
for uniqueness in that case leads naturally to (a)-(c) above.) 

This proof fails for bulbous bodies, and for totally submerged bodies, as illustrated 
in figure 2. This is because the bound for # 2 ( x , 0 )  is derived from an integral on a 
vertical line, which must lie wholly in the fluid. This failure should not be seen as 
an indication of any intrinsic difficulty with the underlying hydrodynamics ; the above 
conditions are sufficient for uniqueness, but there is no reason to believe they are 
necessary. 

(c) all depth variations must lie in x1 < x d x2. 
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Here we should note the presence of the factor f in (3.3) (or the factor (3.6) in the 
finite-depth case). This suggests that we might bound #“x, 0) by considering integrals 
along non-vertical lines, which could lead to a different (possibly larger) factor. 
Provided the factor is still less than unity, and every point of the free surface is used, 
uniqueness will follow. This approach is pursued in Part  2. 

4. Other uniqueness proofs 
Apart from the work of John (1950), there have been a number of papers, each 

of which contributes a part of our understanding of uniqueness in water-wave 
problems. Two of the earliest contributions werc by Kreisel (1949) and Ursell (1950), 
both of whom made use of conformal-mapping techniques. Ursell investigated the 
case of the submerged circular cylinder in an infinite-depth ocean, and established 
uniqueness for any frequency and any depth of submergence. However, his method 
seems hard to extend to other geometries. Kreisel studied the effect on waves of 
cylindrical obstacles either in the free surface or on the fluid bottom. (This can 
represent waves in a fluid layer of variable depth.) He mapped the strip 
- co < x’ < 00, 0 < y’ < d = constant onto the fluid domain by the transformation 
z = f(z’) and evaluated a parameter a in terms of the ‘stretching’ of the free surface 
(dz/dz’),,=, = h(x’), say. Kreisel showed that, for a < 1, the potential was defined 
uniquely by the asymptotic potential at one infinity. Thus, for domains that are, in 
some sense, close to the infinite strip of uniform depth, the diffraction and radiation 
problems are uniquely solvable. 

Vainberg & Maz’ja (1973) also consider the wave potential in a fluid layer of 
variable depth, and they demonstrate two conditions under either of which the 
potential is unique. For the first case they suppose that the lower boundary YD is 
continuously differentiable, does not intersect the upper boundary (y = 0) and is 
always a finite distance from it. They show that,  if 

xn, < 0 over YD, (4.1) 

then # is unique. The second condition, which ensures uniqueness at frequency w ,  
is that the fluid domain should be starlike with respect to some point at a depth d,, 
where 

0 d d,  d g / w 2 ,  (4.2) 

These two conditions between them cover a large number of cases of variable-depth 
fluid layers, but i t  is not hard to  construct situations where neither condition is 
satisfied, or where (4.1) does not apply and (4.2) can only be satisfied for small-enough 
frequency. 

Condition (4.1) appears again in Fitzgerald & Grimshaw (1979), who seem unaware 
of Vainberg & Maz’ja’s paper. They also give two more conditions for uniqueness in 
fluid layers of variable depth. The conditions relate to  the form of the function h(x‘), 
as defined above ; in this respect these authors have extended Kreisel’s work, and cases 
can be dealt with where the asymptotic depths a t  x = f co are different. 

However, the two criteria given by Fitzgerald & Grimshaw are not totally 
straightforward to test, since they involve the transformation (assumed known) from 
the uniform strip. We note here that this problem can be avoided by restating the 
criteria in terms of the arclength s measured along the bottom boundary of the 
physical domain. (This is particularly useful when the depth cannot be described by 
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a single-valued function.) Thus, i’f this boundary is parametrized by (s (s ) ,  y(s)), then 
either of the following conditions will guarantee the uniqueness of the potential : 

(a) y(s) is monotonic (i.e. y’(s) is single-signed) : or 

(b)  y(s) is an even function and sy’(s) 2 0, 
(4.3) I 

for a suitable origin of s. 
A further result relevant to variable-depth fluid layers is contained in Fitzgerald 

(1976), where some limiting cases are studied. Uniqueness is established for general 
bottom profiles when the frequency is sufficiently high or low; and, at a fixed 
frequency, the potential will be unique provided that the horizontal lengthscale of 
depth variations is suitably large. 

The problem of a body floating in a uniform-depth ocean has been studied by Beale 
(1977). He showed, in a long and complicated paper using function-theoretic 
techniques, that  the eigenvalues (that is, frequencies at which non-uniqueness could 
occur) form a discrete set. This work is simplified and extended by Vullierme-Ledard 
(1983), who shows that the eigenvalues are discrete for the infinite-depth case.? She 
further shows that zero frequency is not an accumulation point of the eigenvalues, 
and, if the body is totally submerged, then neither is infinite frequency. These 
conclusions about the limits as the frequency becomes small or large are confirmed 
with the much simpler technique in Part 2 of the present paper (see 96). 

Other recent work of note (apart from that of Lenoir & Martin (1981), whose 
uniqueness proof has been shown to be erroneous) has concentrated on submerged 
bodies. Kershaw (1983) uses integral-equation methods to show that the potential 
will be unique provided the body is strictly convex and is deeply enough submerged. 
However, i t  seems very hard to  derive from his method just how deep the body must 
be, even for the simplest geometry. Kershaw’s result is very similar to  (though not 
covered by) a result of Hulme (1984), referred to  in 95. Hulme’s work concentrates 
on a uniqueness criterion originally stated by V. G. Maz’ja, in Russian; the English 
translation of his work (in a very condensed form) appears in Maz’ja (1978). The 
criterion can be simply stated as follows: define v = (z(y2--x2), -2x2y), then the 
potential is unique provided 

(4.4) 

Although this is a simple condition, Maz’ja does not discuss what types of 
submerged bodies (or variable-depth fluid layers) will satisfy it. Hulme illustrates its 
geometrical interpretation and gives several examples of configurations where (4.4) 
is satisfied; figure 3 reproduces figure 2 of Hulme’s paper (with his permission). This 
shows the integral curves of 0 ,  defined by 

u - n  >, 0 over YB (and YD if in finite depth). 

dx dy 

2’5 VY 

they are a family of directed semicircular arcs, starting on the y-axis and terminating 
a t  the origin. Condition (4.4) is then equivalent to the statement that all such arcs 
point into the fluid region over the whole of YB u YD. This geometrical interpretation 
makes i t  much easier to determine whether or not a particular configuration will 
satisfy Maz’ja’s criterion, and Hulme gives an example, in his figure 3, of a body for 

-=--. 

t Beale and Vullierme-Ledard both work in three dimensions, but their work is still applicable 
to the two-dimensional case. 
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Y’O 

FIGURE 3. The integral curves of u = (x(yZ-z2), -2x’y) and the boundary of a body that 
satisfies Maz’ja’s criterion. 

which Maz’ja’s uniqueness proof does not work, as can bt: seen immediately from the 
diagram. 

We now move on to describe our recent progress on uniqueness. 

PART 2. AN EXTENSION OF JOHN’S PROOF 

5. Integrals along non-vertical lines 

for lines that are not vertical, viz 
We start by considering infinite depth. Green’s theorem gives an analogue of (2.4) 

Here 11. represents any wave potential that is bounded as 1x1 +a, and Sb is any 
line between the free surface and y = co , provided there are no bodies present in the 
fluid between W b  and x = 00. Here s is arclength measured along W b  (see figure 4). Note 
that we are dealing only with positive x; bounds for c$2(b,0) where (b,O) is on the 
negative-x side of all floating bodies, can be dealt with separately in an identical way. 

Now we make a specific choice of @: 

This choice gives 

and so (5.3) 

(Alternatively, this can be seen from the fact that @ is an analytic function of y + ix, 
and is thus analytic in s + in when referred to the local axes n, s.) This last equation 
is the key step, since (5.1 j now gives 



Uniqueness in two-dimensional water-wave problems 145 

or 

Thus 

FIGURE 4. Fluid domain, axes and a line Vb.  

This is the required analogue of (3.1), and we continue by bounding cP2(b, 0);  again 
we remember that $ is real: 

where 

We will have achieved our aim provided that we can construct a set of lines Vb,  
described by x = x(y; b) ,  such that 

( a )  the lines are non-intersecting, and N(Vb)  = inf (axlab) > 0 ;  

(b)  every point (b, 0 )  of YF corresponds to one line vb; and 
( c )  m(%b) d MN(Vb)  for all lines W b ,  where M Q 1 .  

Y 
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If these conditions are satisfied, then the lines are space-filling and 

(5.10) 

where W, is the region swept out by all the lines Wb. Clearly Vq5 = 0 if M c 1 ,  and 
so q5 = const = 0. Also, if M = 1 ,  then uniqueness follows provided BL is not the whole 
o f%;  for then Vq5 = 0 in the portion of 9 not covered by W,, but q5 is real-analytic, 
and so Vq5 = 0 everywhere. 

It should be made clear a t  this stage that only two of the lines W b  are really 
significant, namely two that (together with a closure a t  large depth) bound the volume 
of fluid that contains all the bodies present, and that contains no open interval of 
the free surface. All other lines W b  can; if required, be formed by a horizontal 
displacement of one or other of the two bounding lines, depending only on which side 
of the bodies they lie. This means we can take N(Vb) = 1 for all W b ,  and so we require, 
for uniqueness, simply that m(Vb) < 1 on the two bounding lines. 

Clearly this proof includes the John (1950) proof, since vertical lines have 
ds/dy = 1 ,  so m = +; the current proof, however, also allows ds/dy > 1 .  To employ 
the proof, we must use specific functions and the possibilities are unlimited. We start 
with the simplest case, that  of straight lines at an angle p to  the vertical. 
Thus 

(5.11) 
ds 
- = sec p, m(Wb) = K sec2 p e-2KY dy = sec2 p, 
dY 

which allows sec p < 4 2 ,  i.e. p < in. (5.12) 

Immediately we can show many problems are unique, as the examples in figure 5 
illustrate. 

It is interesting to compare the conclusions here with those for a submerged body 
under Maz'ja's theorem (Hulme 1984). Consider the submerged elliptical cylinder 

5 2  -+ ( ~ - - h ) ~  = a2 
A2 

(h  > a and h > 0). (5.13) 

The present work proves uniqueness provided that 

h 
a 
- 3 (1 + A 2 ) ? ,  (5.14a) 

while Hulme obtains 

h 
- 3 max (2h2- 1 , l ) .  
a 

(5.146) 

Comparing these results, we see that the present work is an improvement for h > +2/5. 
Note, however, the poor result of the present work when h < 1 ,  where Maz'ja's 
theorem shows that the cylinder gives a unique potential a t  any depth of 
submergence. 

Consider also the general result stated in Corollary 2 of Hulme's paper. He showed 
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v = o  
147 

y = o  

(C)  

FIGURE 5.  Situations shown to be unique by the present proof: (a )  a submerged body; 
( b )  a floating body; ( c )  a multiple-body problem. 
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that the potential # will vanish if (a )  xn, > 0 (x =/= 0) over YB, and ( b )  the body is 
deeply enough submerged. 

Conversely, the present work shows that # = 0 for any single body, or multiple-body 
system, provided it is (a )  of finite horizontal extent, and ( b )  deeply enough submerged. 

For a particular body, the previous example shows that the present work may be 
stronger or weaker than Maz’ja’s theorem in estimating the minimum depth of 
submergence for uniqueness. 

6. Frequency-dependent results 

constant, the uniqueness proof is now frequency-dependent (see later). 
We move on to consider lines %b that  are not straight. Since dsldy is no longer 

so we require 

to satisfy ( 5 . 9 ~ ) .  

Case A. Two other simple geometries are as follows: 
The case of straight lines a t  an angle /3 < in to the vertical will be referred to as 

Case B 

so that (6.1) gives tan p d e K L ;  

Case C 

in which case tan p < (1 -e-ZKL)-f. (6 .5)  

These cases are useful because the maximum angle p obtainable is greater than +K 
in each case. Examples of their use are shown in figure 6. Case B proves very useful 
for submerged bodies, and for high frequency. For instance, if we return to the 
submerged elliptical cylinder, ( 5 . 1 4 ~ )  can be replaced by 

It is clear that  very small depths of submergence are possible provided that K is 
large. It is interesting to  regard the right-hand side of (6.6) as a function of Kl (for 
fixed Ka) and then optimise the bound. We can show that’ the optimum can improve 
upon ( 5 . 1 4 ~ )  if Ka > h - 2 ( l + h 2 ) ~ ,  giving for example 

h 4+31n2 
- 2  a 2 4 2  

rz 2.15 when h = 2 2 / 2  and Ka = 4 2 .  

Case B also allows the proof of uniqueness for any finite submerged body, provided 
the frequency is high enough. This is a result to be expected but unavailable from 
the frequency-independent proofs of John and Maz’ja. A sketch of this proof is as 
follows. 
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v = o  

y = o  

t 
\ \ 4 

( b )  

FIGURE 6. Lines $9, for the proof of uniqueness for the (a )  high-frequency, 
and ( b )  low-frequency, limits. 

Let the highest point of the submerged body be at y = L > 0, and choose 1~ (0, L) .  
Take the set of lines W b  as in Case B with identical slopes @, sloping away from the 
highest point on either side of the body (see figure 6a) .  These curves are indeed 
non-intersecting, and each point of the free surface is used. Further, by construction 
there will be some value of p( < in) large enough so that the lines do not intersect 
the body. Then Uniqueness follows provided (6.3) applies, that is 

1 
1 

K 2 -In (tan p). 

The complementary Case C also proves useful, particularly when K is small. I n  fact, 
i t  allows the proof of uniqueness for any body of finite extent, floating or submerged,? 
provided the frequency is low enough. The proof runs as follows. 

Choose the origin of x such that the body lies between x = - L and x = + L.  Draw 
two lines from the origin, sloping with equal angles p, one on each side of x = 0. For 
1 < y < co continue these lines vertically (see figure 66) .  All other lines W b  will be 
identical to  one or other of these two, depending on which side of x = 0 they lie. 

From the geometry of the problem, the lines W b  will not intersect the body provided 

/3 2 a for some a < +TC and 1 t a n p  L. (6.8 a,  b) 

t The proof will be given here for a submerged body, but the floating case follows exactly the 
same ideas; the proof will not apply when a body intersects the free surface tangentially. 



150 

Now (6.5) and ( 6 . 8 ~ )  give 
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(6.10) But (6.8b) can be written 

and the right-hand side is an increasing function of KZ, so that (6.9) and (6.10) put 
an upper bound on KL. Thus uniqueness is proved for 

KZ 
(1-e-ZKz)f KL < 

(6.11) 
tan a 
2L 

K G - -  In (1 -cot2a). 

Note that this uniqueness proof could, in principle, have been carried out with 
Idx/dy) = any monotonic decreasing function of y ; similarly Case B could be replaced 
by having any monotonic increasing function of y for Idx/dy(. Examples of these are 

dx 
- = c ( K ~ ) ~  
Idyl (n 2 -;), (6 .12~)  

and (6.1) gives c2 < 22n/172n+ 1). (6.12b) 

Notice that the curves depend on K even though the bound does not ; the alternative 
is to have curves independent of K (e.g. Idx/dyl = f(y/Z), where Z is a lengthscale of 
the problem), but then the bound does involve K via KZ. 

The results of this section agree with the conclusions of Vullierme-Ledard, already 
mentioned in 54, but go further. Not only does the present work demonstrate that 
non-uniqueness cannot occur near zero frequency (nor near infinite frequency if the 
body is submerged), but it also provides bounds on K .  That is, for a particular body, 
Cases B and C give the range of frequencies inside which any non-uniqueness will occur 
(if at  all). 

7. The finite-depth case 
Put 

$ = cosh k,(d - y) e-iko(x-b) and 

where k, is as defined in (1.9). Both $ and 3 are harmonic ; $ satisfies (1.2) and (1.5), 
whereas $ = 0 on y = d. Here we are assuming that d(x) = d = constant between V, 
and z = 00 (cf. figure 4). Also 

$ = i sinh k,(d- y) e-iko(z-b), (7.1) 

so that 

Again (+--$-)ds all. a+ = 0, 
an an 

' b  

(7.3) 

Notice that, if a < fn, Case A shows the situation to be unique at all frequencies. 
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where Ceb stretches between (b ,  0) and y = d, so that 

As before, we must now bound q52(b, 0); in order to achieve a bound that is useful 
€or small k,d, we take the real part. Remembering that q5 is real, we have 

sinh (k, d) # ( b ,  0) 

= Jwb {coshk,(d-y) sinhIc,(z-b)--sinhk,(d-y) aq5 
an 

We use the inequality 

as 
a# coshk,(d-y) sink,(z-b)--sinhk,(d-y) cosk,(z-b)- I an 

G (cosh2 k,(d-y) sin2k,(z-b)+sinh2ko(d-y) cos2 k,(z-b)} (V$)2 

= {sinh2k,(d-y)+sin2ko(z-b)}(Vq5)2. (7.6) 

Then (1.9), (7.5) and (7.6) give 

2k0 d 
K$2(b,0) < sinh2k,d [: jeb (sinh2k,(d-y)+sin2k,(z-b)} 

(7.7) 

Once again i t  will be sufficient if we can show that the expression multiplying 
s,b(Vq5)2 dy is less than unity, and again i t  is necessary to use a specific function x(y). 
As before, the most convenient case is that  of straight lines, even though these may 
not give the strongest bound. 

Thus 

so that 

{sinh2(k,y)+sin2 (koy tanP)}dy 

- - 9 6 (cosh (Zk, y) - cos (ZL, y tan p)] dy 

sinh (2k, d) - sin (2ko d tan p )  I 2k,d 
= 8 sec2 /3 

m(Vb) = + secZ/3 D = 2k,d. 
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FIQURE 7 .  The value of p,,,, computed from (7.13), plotted against the dimensionless depth 
D = 2ko d,  where k, tanh ( k ,  d )  = w2/g .  

Thus the maximum angle ,!I,,, (where m(Wb) = 1) is given by 

sin (Dt) 
t sinh D ' 

t = tan ,!I,,,. 
2 

-= 1- 
1 + t 2  

(7.10) 

This can easily be solved numerically by iteration, starting from t = to, where 

[ (12D-2): (D < Do = 2.5, say), 

these being the asymptotic forms in the respective limits as D+O and D+m. 

imaginary part of (7.4), viz 
However, a small improvement on this value of p,,, can be made by utilizing the 

0 = jwb {coshk,(d--y) cosk,(x-b)--+sinhk,(d-y) an 

An arbitrary multiple y times this equation is now added to (7 .5) ,  and the bound for 
&b2(b, 0) is constructed as in (7.6)-(7.8), to give, in place of (7.10), 

-- 

(7.12) i 
2 

1 + t 2  
- ( l -A)+2yB+y2(1+A),  

where t sinh B(A, B) = (sin (Dt) ,  1 -cos (Dt)) .  

We desire p,,, to be as large as possible, so we minimize this quadratic in y by 
choosing y = - B/ (  1 + A )  to  give 

t sinhD-2B 
-- - 1-A--- - (7.13) 
1 + t 2  1 + A  tsinhD+sin(Dt) '  

Once this is solved by iteration, to  give p,,, as shown in figure 7,  then straight lines 
with 0 < p < p,,, can be used in the uniqueness proof. The main improvement of 
(7.13) over (7.10) is seen for small D, where now t - (48D-2)a. p,,, is, surprisingly, 
not monotonic, but crosses the value 45" when D = 2nn and when 

sinh D + 2 tan (+D) = 0. (7.14) 

B2 2 
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the lowest root of which is 3.40578 ... . In  fact p,,, 44F for all values of D, that 
is, for all frequencies and depths. 

Although great attention has been paid to pmaX obtained by this method, it must 
be emphasized that p,,, (and its infinite-depth value, $) should not be seen as 
intrinsic to the uniqueness problem; the value is purely a result of the method used 
to obtain the bound for &b2(b,0). It may well be possible to achieve higher angles 
of slope for straight lines by constructing the bound in a different way and possibly 
by considering other functions @. It is certainly possible to make use of other 
functions x(y) in (7.7), just as in $6, and the curves can be chosen to fit the particular 
geometry under consideration. 

8. Conclusion 
A method has been developed which demonstrates uniqueness in a large class of 

two-dimensional linear water-wave problems. The techniques can be seen as a 
generalization of work by John (1950), and derives bounds for ~ P ( x ,  0) by considering 
integrals along non-vertical lines. In infinite depth, when these lines are straight, they 
can be inclined up to an angle 45’ away from the vertical; for lines that are not 
straight the possible inclinations are greater. This technique also proves that the 
potential will be unique in almost every case (with a very limited class of exception) 
provided the frequency is small enough ; similarly, we show that submerged bodies 
give rise to unique potentials provided the frequency is large enough. In  either limit, 
the method gives a bound on how small, or large, the frequency must be for 
uniqueness to be guaranteed. 

Finally the technique is used in the finite-depth case, where the maximum angle 
of slope, of straight lines to be used in the proof, is a function of the dimensionless 
depth, and is given by an implicit relationship. This is solved numerically, and it is 
shown that the maximum angle is a t  least 44r  for all depths of fluid. 

Further work will attempt to extend the method herein t,o three-dimensional 
situations. 
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